| >

+Efs€fr€u€ix] ’ (9)

where x, y, z refer to components along cube axes.
Numerical techniques for computing Sy;(w) and
S.4(w) were very similar to those described above
for the hcp lattice.

Results for S;;(w) and S,,(w) as a function of w,
together with the one-phonon density of states
g(3w), are plotted in Fig. 2. The bcc lattice struc-
ture is simple enough that there are relatively few
critical points, and these show up quite prominently
in the two-phonon scattering. To identify the criti-
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cal points, we have searched, via phonon-frequency
isopleths, the three symmetry planes of the first
Brillouin zone together with the zone face. All
critical points found on these planes are labeled

in Fig. 2, and it can be seen that these include
most of the prominent ones. It also appears that
there are additional critical points in the bcc spec-
trum which do not lie on any bounding plane of the
irreducible 75 of the Brillouin zone, and hence are
not required by symmetry. We are not aware of
any study specifying the minimum number, let
alone their location, of critical points in the bcc
structure.
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The Hartree-Fock-Slater (HFS) equations for the two-electron orbitals localized about an
anjon vacancy in CaF,, SrF,, and BaF, have been solved numerically in the point-ion-lattice
potential. It is found that the ground state !S(1s, 1s) contains bound electronic orbitals which

are spatially compact.

The existence of bound excited states for the F~ center in these crys-

tals has been investigated. However, definitive statements on such excited states are not

available at present.

I. INTRODUCTION

The F - center in the alkaline-earth fluorides con-
sists of two electrons, the defect electrons, lo-
calized about a vacant anion site.! Conclusive ex-
perimental evidence for the existence of the F -
center in CaF,, SrF,, and BaF, has not been re-
ported in the literature.?® This center has been
proposed as one of several tentative models which
might explain some of the many bands on the long-
wavelength side of the M band in additively colored
alkaline-earth fluorides. The M center consists
of two F centers bound together at nearest-neighbor
anion sites, and the F center consists of one elec-
tron localized about a vacant anion site. These
give rise to the absorption bands which are formed
during bleaching with F-band light. There are four
bands situated in region from 600 nm (0. 0760 a.u.)
to 725 nm (0. 0629 a.u.) for calcium fluoride and
from 683 nm (0. 0668 a.u.) to 805 nm (0. 0566 a.u.)

for strontium fluoride.?* Only two bands have been
observed on the long-wavelength side of the M band
in barium fluoride. The bands which would cor-
respond to the 805 and 775 nm bands in strontium
fluoride have not been observed in barium fluoride
because their intensities are too small.

F-band bleaching excites optically the F center,
the M center, and other aggregate centers. Im-
purity centers such as rare earths are not consid-
ered in this paper. In the case of the alkali halide
crystals, an excited defect electron of a color cen-
ter may be assisted by thermal phonons into the
conduction band. Once in the conduction band, it
moves through the crystal until it is trapped again.
The electron traps include ionized F* and M* cen-
ters and other ionized aggregate centers, and also
the neutral F and M centers and other neutral ag-
gregate centers. When an extra electron is trapped
at a neutral center, a new center is formed. These
centers are denoted, for example, by F~ and M",
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respectively. Experiments on potassium chloride
indicate that an absorption band due to the F~ cen-
ter has a peak at a longer wavelength, 1000 nm
(0.046 a.u.), than the neutral F center, 536 nm
(0.085 a.u.). The F- center in KCl is stable only
at sufficiently low temperatures below 200K.° If
one assumes that the above process also may occur
in the alkaline-earth fluorides, then the absorption
band due to the F - center is expected to be at a
longer wavelength than the absorption band due to
the F center.

Studies on the intrinsic optical properties of
simple color centers in the alkaline-earth fluorides
are hindered by the presence of impurities and the
high probability with which F centers form aggre-
gate centers and impurity associated centers. In
fact, positive experimental identifications of the F-
and M-center in calcium fluoride have been made
only in the last decade, &7

In this paper, calculations on some states of the
F- center in CaF,, SrF,, and BaF; are reported.

A point-ion-lattice model which incorporates the
Hartree-Fock-Slater (HFS) procedure to compute
the defect electron orbitals is used. In addition,
the model contains estimates for the correlation
energy of the defect electrons.® These approxima-
tions constitute the model and make it solvable on
a computer. The formalism which leads to an es-
timate for the correlation energy is analogous to
the formalism by which Slater estimates the ex-
change energy for the free-electron gas.®® To the
author’s knowledge, no calculations on the electronic
states of the F - center in CaF,, SrF;, and BaF,
have appeared previously in the literature. It is
hoped that such calculations on the F- center will
aid researchers in understanding the optical prop-
erties of color centers in the alkaline-earth flu-
orides. Because no ionic and electronic polariza-
tions of the lattice are included in the model, the
present calculations are not physically precise and
any future agreement with experiment should be
considered as being fortuitous. However, the meth-
ods and procedures used here have had some suc-
cess for the F - center in KC1 and for the F center
in Ca0.1!° Therefore, the calculations reported
here indicate what one might expect in optical ex-
periments on the fluorides of calcium, strontium,
and barium. Such calculations also would be infor-
mative if the F-center to F™-center photochromic
process were found to exist.

The HFS equations for the F- center given by the
model outlined in the preceding paragraph are
solved numerically. These numerically computed
solutions give the exact properties of the model.
The model has for the ground state !S (1s, 1s) bound
electronic orbitals which are spatially compact.

An orbital is referred to as compact whenever its
spatial extent is less than or of the order of mag-
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nitude of the nearest-neighbor distance. The same
model is used to compute the ground-state energies
of the F center (one electron) in CaF,, SrF,, and
BaF,. The theoretical binding energies of the F~
centers in the above three fluorides have been es-
timated. The existence of bound excited states for
these F - centers remains uncertain. The attempts
to solve for the singlet excited state P (1s, 2p) of
the model suggest that the 1s-like orbital is spatial-
ly compact but that the 2p-like orbital is either
spatially very diffuse (but bound) or bandlike (not
bound). The uncertainty of the spatial extent of

the second electron orbital arises from two related
and practical considerations. The numerical in-
tegration procedure converges more slowly the
more diffuse the orbital becomes (or, equivalently,
the smaller the magnitude of its energy eigenvalue
becomes).

II. POINT-ION MODEL

We shall examine here the orbitals and energies
of the two defect F - electrons localized about an
anion vacancy in an otherwise perfect point-ion
fluorite lattice. This corresponds to the case for
which the electronic and ionic polarizations are
zero. We shall study the possible optical transi-
tions which the defect electrons may undergo. We
denote the state of the F- center by |7), where the
symbol 7 represents the electronic configuration
of the two defect electrons. We shall consider here
the ground state s (1s, 1s) and shall determine
whether any low-lying excited states such as !P
(1s, 2p) exist with both 1s-like and 2p-like orbitals
bound.

Before presenting an expression for the total F -
center energy, we introduce some notations and
definitions. The F ~-center electronic wave func-
tion ¥,(x, y) has the representation

\Iln(x: y)=<x,y|77> . (1)

The spatial charge density due to the two defect
electrons in the configuration 7 is

pF-(?;T’) ==-2e f day \If,;"(r, y)\I’n(’V, y) ’ (2)

where d® is the volume element in the coordinate,
and spin space y and the integration is over only
the spatial coordinates. We also specify in Eq.
(2) that the wave function is normalized to unity.
We create a vacancy at the fluorine anion site
To=0 of charge Z,= - 1 by adding an effective va-
cancy charge Z, - Z,=1 at T,. We treat the effec-
tive vacancy charge as a point charge and write
the charge density p,(¥) due to the vacancy in
terms of a three-dimensional & function 5%(F):

p,(F)=2,06%(F) . ®)

We define for future use Z,= - e, where the magni-
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tude of the electronic charge is e. The total F--
center charge density becomes the sum of the above
charge densities,

pa(F)=p(F;1)+ p,(T) . @

We now list the terms of the point-ion-model
Hamiltonian. The kinetic-energy operators for the
two defect electrons contribute a term

30 (X,¥) =~ (B2/2m) (Vi + V) , (5)

where V4 operates on the coordinates of one defect
electron and V§* operates on the coordinates of the
other defect electron. The mass of electron is m.

We consider the ions as point charges Z,, and we
write the defect-electron—point-ion interaction
operator in the form

S(ZZ(F):ZF Z:, (Zv/[-{‘_-fv|) ’ (6)

where the prime means that the v=0 site is not
included in the summation; T is the position vector
for one of the defect electrons, and T, is the location
of the vth ion. The interaction operator (6) gives
the electrostatic potential energy of a defect elec-
tron moving in a perfect point-ion lattice which has
an ion missing at the v=0 site. We define the
dimensionless quantity @, (F "), which is proportion-
al to the electrostatic potential at an anion site in
the perfect point-ion lattice, by the relation

ay(F)=7 [3(’2(6)/21?] , (7

where 7, is the lattice constant for the CaF, struc-
ture. The potential energy is invariant under the
tetrahedral group, and we may expand it in terms
of the Kubic harmonics!* Q(T;,1,0), e.g.,

365(T) = Voo (")Q(T5, 0,0; 8, @) + Veo()Q(TY, 3,0; 6, ¢)
+ Vo(r)Q(T},4,0;6, 9)+ - -

+ Vno(r)Q(rle,n’ 0;91 (p)+”' ) (8)

where 7 is an integer. Because we shall limit the
wave functions to functions which belong to the ir-
reducible representations I'j(“1s”) and I'S(“2p”) and
because the following matrix elements vanish,

(rilQ(TY,7,0;6,9)|TD=0,

(T3 Q(T$, 7,056, 9)| T =0, ®)
for all » =3, we have that

(| 3¢,(F) | m) =(n| Vo) | 1) ,

where the spherically symmetric part of the point-
ion-crystal potential is denoted by V,,(7) = V(7).

In order to compute V,,, we consider the point
ions as distributed on shells centered at the anion
vacancy. We denote the radius of shell s by 7,,
the number of ions on shell s by S,, and the charge
of the vth ion on shell s by @,=Z,. We then express

1329

the spherically symmetric part of the crystal po-
tential Vg, in terms of the above notation, namely,

S Vo for O<7r<n
Vo) =

2 V,+ (D,/7) for v,<7r<7,, , (10)

where

Vo=2,Zplay,(F)/7],

n
Vn=V0-ZvZFZ (SiQi/"i) forn=1,
i=1

and

n
D,=2,Zg 121 SiQ; .
The electron-point-ion interaction operator contri-
butes the term

3,(F) = Vo ) (11)

Because practical considerations limit the number
of shells which we may explicitly treat, we will
consider the first 21 shells in our computations
and use the Coulomb potential for distances beyond
the 21st shell:

Ve (") =(Z,Z5/7) for >, . (12)

The Coulomb interaction between the two defect
electrons contributes the term

%o (%,9)=(Z2/|%-F|) . (13)

Combining the terms (5), (11), and (13), we write
the total F--center Hamiltonian for the point-ion
model as the sum of one-body and two-body oper-
ators:

%r(X,9) == (72/2m) (VE+ V) + V(%)
+ Vuph(i)*' (Zﬁ/‘;(—?,)

=300 (X) + 3¢ (¥) +3¢c (X, ¥) , (14)

where
30,(X) = = (B2/2m)V + V(%) .

Because all the terms of the model Hamiltonian are
real, we may choose the electronic wave functions
¥, (x,y) to be real. They are also normalized to the
crystal volume:

[ dx [ ay ¥ }x, p)¥,(x,9)=1, (15)
where the integrations over dx and dy are interpreted

to include integration over the entire crystal volume
and summation over the spin coordinates.
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III. HFS EQUATIONS

We define now for computational convenience the
quantities with which we shall compute the total
energy of the F- center. When the author listed
the F--center states, he has assumed implicitly
that the central-field approximation is reasonable
for the low-lying states with angular momentum
quantum number ! =<2 in a tetrahedral potential.
The most general central-field representation for
the one-electron wave functions u is

unlms(x) =R,,,,,,,(7’)Y,m(9, (0) as )

where R(») is the radial function, Y,, is a spherical
harmonic function, and @, is the spin function. The
principal, orbital, magnetic, and spin quantum
numbers are, respectively, n, [, m, and s. We
shall use, however, the more restrictive represen-
tation

unlms(x) =Rnl (T)Ylm(oy (0)03 .

We define the radial functions P, ()= vR,;(r), and
normalize them to the crystal volume, [ P,2(r)dr
=1.

We express the spherically averaged total elec-
tronic charge density for both spins in terms of
the radial functions

pay () =—elo(r)/417*],
where the spherical density o(7) is

o(r)= Z W,y PMZ(,',) ’
nl

and the occupation number of the spatial orbital for
both spins in w,;. The summation },,, w,, equals
2 for the F - center.

It is now convenient to introduce the abbreviations
which will appear in the HFS equations for the one-
electron wave functions «; and u,. The electronic
wave function for the F - center will be constructed
from these two functions:

112=121= fdxul(x)uz(x) ’ (16)

H”=H”= fdxu,(x)Z(’o('i)u;(x) ) (17)
and

g“(-{')=fdxui(xmc(;(,?)uj(x) . (18)

The Schridinger equations for the F ~-center
wave functions are obtained by performing the varia-
tion of the expectation value of the total Hamiltonian,

d dy ¥ %. V)W
<3CT>=f xf y n(x,y)&(r(x,y) n(x,y) ' (19)

[ dx [ dy¥X(x, y)¥,(x,y)

with respect to the wave functions ¥,(x, y) subject
to the normalization constraint. The variation gives
the equation

BENNETT

| o>

[ dx [ dy 8% (x,y) 3¢ 2(%,¥) - E]¥,(x,9)=0 .
(20)
Equation (20) is to be valid for any arbitrary varia-
tion of the function ¥.¥(x,y). Hence, we obtain the
Schrédinger equation

JCT(;{:-i)‘I’n(x’ y) = E‘I',,(x, y)

for each of the orbitals with symmetry 7.

Because the Schrédinger equation (21) cannot be
solved exactly even by numerical methods, we
shall use the self-consistent-field method [Hartree-
Fock (HF)] to calculate the wave functions of the
stationary states of the F - center. Each of the two
defect electrons moves in the average field of the
other defect electron. Even though the model Ham-
iltonian (14) is spin independent, we shall include
the symmetry effects of the spins of the two defect
electrons in accordance with the Pauli exclusion
principle. That is, we approximate the wave func-
tion ¥,(x, y) by the HF wave function:

‘I’n(x; ) z\I'ﬂ(x’ y; HF)

(1)

—9-1/2 [y () uz(y) = ul(y)uz(x)] . 22)

The functions #, and u, are normalized to the crys-
tal volume and the spin space

fdxu*(x)u(x)=1 .

We obtain a set of coupled intergrodifferential equa-
tions for the functions %, and u, by substituting

Eq. (22) into Eq. (21), by carrying out the varia-
tion with respect to u, and u, separately, and by
equating to zero the coefficients of 6, and du, which
appear in the integrand. Using Egs. (16) to (18),
we have two coupled equations for %, and u, *:

[3(’.0(?) - E+Hy+ 922(-17)] ul("’)

={115[36,(F) - E]+ Hyp+ Gro (D)} (), (23)
[:K-’o(?) - E+H11+gu(?’)] uz(”)
= {112 [3(’0(-{') - E] +H1z+912(-{‘)}u1(7) . (24)

Since the bracketed operators in Eqs. (23) and

(24) are different functions of 7, their solutions
u,(x) and u,(x) are not, in general, orthogonal to
one another. However, the structure of the self-
consistent field equations (23) and (24), which
arises from the antisymmetric properties of the
wave function ¥,(x, y; HF), permits us to regard
the spin orbitals #, and u, as orthogonal functions'2:

[ dxuxu,(x)=05;, .

The HF variational equations (23) and (24) may
be solved in principle by numerical iterative tech-
niques. Such a procedure requires an excessive
amount of computer time. To reduce the computa-

(25)
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tion time, we introduce Slater’s simplified version
of these HF equations.® His simplification is based
upon a free-electron exchange approximation for
the exchange terms which occur in Eqs. (23) and
(24) when the two defect electrons are in a triplet
configuration (S=1). Following Slater’s suggestion,
we assume that the averaged exchange potential

for the F - center at the point 7 is equal to the ex-
change potential which a free-electron gas would
have if its total electron charge density for both
spins were equal to that of the nonuniform system
(the two F--center defect electrons), namely,

Vexen(F) == 3e2[(3/8m)e™ | p(F)[ 1172 . (26)

Equation (26) means that the averaged exchange po-
tential for the two F "-center electrons depends
only on the local electronic charge density p(T)
=pg-(7, n). Thus the problem of calculating the
exchange integrals g;; when i #j for the triplet states
is circumvented.

Keeping the above assumptions in mind, we write
the HFS variational equations for the F - center
when the electrons are in a triplet state:

(_ r® d® R 1+1)

omar:  2m » + Ve (1)

Vo) 4 V) )P = B Pa) @D
where the Coulomb potential V. (») has the form

V)= (/) [T o(t)dt+ e [ “ [o®)/t)at ,

and the exchange potential V,(») has the form
V. (r)=-36e[(3/8me| p,, (| 1173 .

Let us define V()= Vo (#) + V(¥) for future use.
The HF variational equations for the central-field
approximation of the F - center in a singlet state
become

nZ g2 n? 1(+1)
“em arttam o7 V)

SV <r)) Poy() = Eyy B0 . (28)

The Slater free-electron exchange approximation
stresses the similarities between the exchange hole
for a free-electron gas and for an atomiclike sys-
tem such as the F~ center. We now mention some
difficulties. The above exchange hole in the
atomiclike F - center is not, in general, spherical-
ly symmetric and does not attain its maximum value
at the position of the electron as the exchange hole
for the free-electron gas does. As the electrons
move away from the vacancy, the exchange hole
lags behind. This lag is slight for spatially com-
pact states, but it becomes important for spatially
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diffuse states. Hence, Eq. (26) becomes suspect
at large values of 7.

The self -Coulomb-energy part of the total elec-
tronic Coulomb energy cancels exactly in the con-
ventional HF method a corresponding energy in the
total exchange energy. This cancellation does not
occur in the HFS equation at large ». Following
Latter, 13 we alter the sum V,(r) so that it has the
correct asymptotic behavior at large . We define

V()= Ve (r)+ V (r) for r<r,

and

V(r)= e2<z w,, - 1>/r for v=r,.
nl

The radius 7, is that value for » at which

V(7o) = €2 (% w,; - 1)/70 .

Thus, we use approximation (26) for the region

¥ <7, in which the exchange hole follows the motion
of the electron fairly well, and we use the correct
asymptotic form (3 ,, w,; — 1)/7 for the region

¥ = 7.

IV. CORRELATION ENERGY AND TOTAL F~ -
CENTER ENERGY

The HF method does not include the spatial cor-
relation in the motion of the two defect electrons
produced by their instantaneous Coulomb repulsion
3o (%,7). But even though the Coulomb correlation
is neglected, the HF method does introduce a sta-
tistical (exchange) correlation in the motion of elec-
tron pairs with the same spin through the antisym-
metric (determinantal) wave function. Since Cou-
lomb correlation is most important when the elec-
trons are close together and since the statistical
correlation tends to keep electrons with the same
spin far apart, neglect of the Coulomb correlation
in the HF equations for the triplet states of the F -
center is tolerable. But, the HF equations for the
singlet states of the F - center contain no exchange
terms and, hence, no statistical correlations.

Since the Coulomb correlation is much more im-
portant for the singlet states of the F - center than
it is for the triplet states, we shall follow the
procedure of Milter® which estimates the Coulomb
correlation energy for atomiclike systems. The
approximate HF wave function (22) is the source of
the Coulomb correlation problem. It arises from
that fact that ¥, (x, y; HF) does not depend upon the
norm |X-y| and that ¥, (x, v; HF) contains products
of one-electron wave functions. We define the cor-
relation energy by

EC = <\Il11(x) y)| :}(T: ‘I’n(x’ ,\’))
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= (¥, (x, y; HF)| 3¢ | ¥,(x, y; HF)) . (29)

Let us assume also that a correlation operator
8-(1X -7 1) exists such that its expectation value in
the approximate representation ¥,(x, y; HF) is the
correlation energy

Ec=(¥,(x,v; HF)| §.(|X-7|)| ¥, (x,y; HF)) .  (30)

We may introduce, then, the correlation potential
W,(T) by the following operation:

W.(F)= [ d*x¥,(x,v; HF)&,(| X - F| )¥,(x, »; HF) .
(1)
Mitler® and Wigner!* introduce in the HF equations
an additional central “correlation” potential W(#»)
to which pairs of electrons with opposite spin are
subject. The approximate correlation potential
W(r) has the form!

W) =-€?0.288/[5.1ay+ v,(»)] , (32)

where a, is the Bohr radius and the local density of
electrons is

et p)| =[@n/3)r (] .

We expect that expression (32) is a good estimate
for the correlation potential W,(T); that is, W(»)
~W,(T). Our prescription is, then, to replace
Ve (#) in the singlet HF variational equations (28)
with V. (7)+ W(r). Because the inequality,

0= W(ry)/Vaen(r,) =0.3147,/(5. 1lay+ »,) =0. 3147, ,

is obtained, we do not include the Coulomb correla-
tion potential in the triplet HF variational equations
(27).

Hence, the HFS equations (which include the ex-

J
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change energy and correlation energy and from
which we numerically compute the radial wave func-
tions) become

(_ r® d* K 10+1)

o2m ar® ' 2m V()

+ V(r)) P,,(r)=E,; P, (v) (33)
for the triplet F ~-center states and
r: d* K% 1Q+1)
(’ om dr: ' 2m + Ve ()
+ V() + W(r)) P,(r)=E, P,,(r) (34)

for the singlet F ~-center states.

The author does not compute here the total energy
of the F - center by summing the eigenvalues of the
HF variational equations and subtracting one-half
times the expectation values of those two-body op-
erators which are estimated in the self-consistent-
field method by effective one-body potentials. The
numerical results from Ref. 15, Chap. I suggest that
the HF wave functions are less sensitive to modi-
fications in effective potentials than are the eigen-
values. For this reason, the author expects that
the more accurate way to compute the total energy
of the F - center is to compute the total energy
directly from the original Hamiltonian (14) by using
the HF wave functions which obtain from Eqs. (33)
and (34). The triplet state has a total energy given
by

Ex[nGld;n'1'D)] = [ d@®x 1, ()36 (Rt () + [ d®9 thye 12 (9)3¢0(Ftter ()

+ [ @3 [ d% ty (X)tte 10 ()30 (X, Tty (¥)tte 1o (v)

Similarly, the singlet state has a total energy given by

Ep[nlt;n1V) = [ d®x 1, ()56 (D) 1y, (%)

= [ @ [ @Yty (it 0 (D)3 (K, Tty (9) koo () (35)
"'fdayun'l'(y)gco(y’)un'l'(y)*'fdaxfdsyunl(x)un'I’(y)scc(iy?)unl(x)un'l’(y)
+ 2l J@%u W (Rt () + [ A thys 1o (WDt (9)] . (36)

The terms containing the correlation potential W(»)
must be included in order to obtain Eq. (34) by a
variation of the functions u,, and u,.;» which appear
in the expectation value of the Hamiltonian 3C .

r

V. SPATIAL PROPERTIES

The expectation value of a given power of the
radial coordinate 7 gives us information on the
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spatial extent of the two defect electron wave func-
tions. As a measure of the spatial extent, we have
choser to consider the first and third powers of »
for each of the orbitals, namely,

Y1 [S, T)(nl;n'l')]:r;“fR,,,(r)'r’R,,,(r)4-nrz dr ’
@37)

Vopls,nl;n1)] =7 fR":,:(’V)Y”R":,:(Y)41T1’2d’r ,
(38)

where s=1 or 3 and 7, is the nearest-neighbor dis-
tance of the perfect lattice. The ratio

ronl)= [y (s=3)/rr, (s=1)],

also indicates to what extent the radial functions
have extended tails. Values of 7,<1 indicate com-
pact states and values of 7,>1 indicate diffuse
states. The author has chosen to present the wave-
function data in this manner and not to present many
numerical tables of the wave functions as functions
of the radial coordinate.

VI. RESULTS AND CONCLUSIONS

This section contains the results predicted by the
preceding point-ion model for the F - center with
estimates for the exchange energy and the Coulomb
correlation energy included. Table I lists the
values of the input data which have been used.

The author computed the low-lying state of the
helium atom to check his F --center computer pro-
grams. He obtains, when the Coulomb correlation
energy is included, a ground-state energy of
-2.881 a.u. and a !S(1s, 1s) to 'P (1s, 2p) transition
energy of 0.73 a.u. These numbers compare favor-
ably with the respective experimental values of
—2.904 and 0.78 a.u. The numerical procedures
selected by the author give the energy eigenvalues
to an accuracy of |AE|/E ~0.001. They also give
the self-consistent potential appearing in the HF
equation to an accuracy of |AV |/V=0.01. The
quantities AE and AV are, respectively, the changes
in the trial eigenvalue and the self-consistent po-

TABLE I. Input data for the point-ion model of the
F~ center with exchange energy and correlation energy.
The quantity o, (F~) is proportional to the electrostatic
potential at the anion site. The quantity 7, is the lattice
constant for the calcium fluoride structures. The quan-
tity ay(F°) is dimensionless and the lattice constant is
expressed in terms of atomic units (1 a.u. of length
=0.0529 nm).

CaF, SrF, BaF,
ay(F7) 4.071 4.071 4.071
74 10. 322 10.95% 11,712

%G. C. Benson and E. Dempsey, Proc. Roy. Soc.
(London) A266, 344 (1962).
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TABLE II. Ground-state energy !S(1s, 1s) of the
two-electron F~ center CaF,, SrF,, and BaF,. The
ground-state energy Ep(F) is computed by substituting
the orbital (2 =1, 7=0), which is obtained from Eq. (33),
into Eq. (36). The spatial extent quantities 7»,4(1), 7n,(3),
and 7,(1s) are defined in the text and are dimensionless.
The binding energy Ejp is given by Eq. ( 39). The ener-
gies are expressed in terms of atomic units (1 a.u. of
energy =27.2 eV).

CaF, STF, BaF,
Er(F) -0.318 -0.307 -0.296
715D 0.986 0.965 0.943
715(3) 2.03 1.85 1.66
7(1s) 2.06 1.92 1.76
Eg 0.048 0. 048 0.049

tential which occur between two successive itera-
tions in the numerical integration procedure. Solv-
ing the F "-center problem to greater accuracy re-
quires an excessive amount of computer time. The
author does not feel that the rather simple model
given in this paper warrants greater numerical ac-
curacy in the solution of the HF equations.

The two-electron F “-center calculations for crys-
tals with monovalent anions are not as straight-
forward as the two-electron F-center calculations
for crystals with divalent anions. The present the-
oretical study indicates that the F - center in the
alkaline-earth fluorides is expected to have very
few bound states. It also suggests that it may have
only one bound state, the ground state. In fact, the
above model gives no firm evidence that it has at
least one bound excited state.

The numerical integration of the singlet HFS Eq.
(34) for 1s orbitals of the ground state 'S (1s, 1s)
converges very slowly. After 10 min of computation
on a digital computer, the self-consistent-potential
criterion |AV|/V=0.01 is not met. The numerical

TABLE III. Ground state !S(ls, 1s) of the two-
electron F~ center in CaF,;, SrF,, and BaF,. The ground-
state energy Er(F") is computed by substituting the orbi-
tal # =1, 1=0), which is obtained from Eq. (33) modified
by the addition of the Coulomb correlation potential W(»)
to the potential V(»), into Eq. (36). The spatial extent
quantities 7,4(1), 745(3), and 7,(1ls) are defined in the text
and are dimensionless. The binding energy Ejp is given
in Eq. (39). The energies are expressed in terms of
atomic units (1 a.u. of energy=27.2 eV).

CaF, SrF, BaF,
Ep(F7) —0.319 —0.309 —0.297
715(1) 0.908 0. 889 0.870
¥15(3) 1.42 1.29 1.16
7e(1s) 1.56 1.45 1.34
Ep 0. 049 0. 050 0.050
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TABLE IV. Ground state and the lowest-lying
excited state of the one-electron F center in CaF,, SrF,,
and BaF,. The ground-state energy Er(F, 1s) is com-
puted by substituting the orbital ¢z =1, 7=0), which is
obtained from Eq. (34) with W(») =0 and with V() =0,
into Eq. (40). The lowest-lying-excited-state energy
Er(F, 2p) is computed by substituting the orbital (=2,
1=1), which is obtained from Eq. (34) with W(») =0 and
with Vo) =0, into Eq. (40). The theoretical transition
energy between the ground state and lowest-lying excited
state is Ep(1s-2p). The experimental value for the optical
absorption energy of the F center at 4K is E,. The spatial
extent quantities 7 (1), 7y (3), and #,(1s) are defined in
the text and are dimensionless. The energies are ex-
pressed in terms of atomic units (1 a.u. =27.2 eV).

CaF, STF, BaF,
Ep(F, 1s) -0.270 —0.259 —0.247
715(1) 0.741 0.732 0.722
7153 0.623 0.595 0.567
7e(1s) 0. 840 0. 813 0.785
Er(F, 2p) -0.153 -0.153 -0.152
79p(1) 0.995 0. 963 0.934
795(3) 1.49 1.32 1.17
7e(2p) 1.50 1.37 1.25
Ep(ls —2p) 0.116 0.106 0.096
E, 0.1212 0.105% 0.0752
4B. C. Cavenett et al., Solid State Commun. 5, 653

(1967).

integration of the triplet HFS Eq. (33) converges
much faster than that for the singlet HFS Eq. (34).
Also, the numerical integration of the triplet HFS
Eq. (33) with the Coulomb correlation potential
W(r) added to the potential V(») converges in a
reasonable time. We consider the 1s orbitals which
are obtained from the triplet HFS Eq. (33) and from
the triplet HFS Eq. (33) with V(7) replaced with
V() + W(r) as good approximations to the 1s orbital
which would be obtained from the singlet HFS Eq.
(34) if computer time were not a limitation. In-
serting these 1s orbitals into the Eq. (36) for the
singlet state gives an estimate of the ground state
1S (1s, 1s) energy of the F- center.

Tables II and III contain the numerical estimates
of the ground state for the point-ion lattice with no
distortion. The author has not discussed in this
paper the results when the nearest neighbors move
to accommodate the two defect electrons. The in-
ward motion of the neighboring ions becomes very

BENNETT 4
large (=0.23(V3/4)7,) and the classical ionic-lat-
tice model from which the change in lattice energy
is computed may be incorrect for such large dis-
tortions. The F “-center binding energy Ejy is the
difference in energy between the ground-state one-
electron F-center energy Er[F, 1s] and the ground-
state F--center energy E,[F -, 'S(1s,1s)]:

Eg=E;[F,1s] = E[F-,'S(1s,1s)] . (39)

The F-center energy for the ground state is given
by the expression

Er[F,1s]= [ @7 u; () 36 (Puy (),

where the “1s” F-center wave function is the u,,(7)
solution to the HFS Eq. (34) with V. (»)=0 and
w)=0.

The contents of Tables II and III demonstrate that
the ground-state energy of the F - center is rather
insensitive to the details of the 1s orbital used in
Eq. (36). In fact, substituting the F-center 1s func-
tion given in Table IV into Eq. (36) yields, respec-
tively, for Cal',, SrF,, and BaF,, values for the
F --center energy Er(F~) of —0.299, —0.290, and
-0.279 a.u. These lead, respectively, for CaF,,
SrF,, and BaF,, to the values for the F--center
binding energy Ez of 0.029, 0.031, and 0.032 a.u.

The results of this paper indicate that the point-
ion-lattice model given above for the F - center in
the alkaline-earth fluorides (CaF,, SrF,, and BaF,)
has one state (the ground state) for which the two
electron orbitals may be both bound. The nature of
possible excited states remains uncertain. The
binding energies in Tables II and III and the binding
energies mentioned in the previous paragraph sug-
gest that if the F - center were to exist in the alka-
line-earth fluorides, then it probably would exhibit
an absorption band which attains a maximum value
on the long-wavelength side of the M band. The
author feels that any stronger statements are not
justified by a model as simple as the present model.
More theoretical and experimental research is
required before definitive statements may be made.
We expect that the effects of electronic and ionic
polarizations are much more important for F~ cen-
ters at monovalent anion sites than they are for F
centers at divalent anion sites.
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Free- and bound-exciton emission with longitudinal optical (LO) phonon cooperation is re-

ported in undoped T1Br.

The binding energies of the bound excitons with respect to the free

exciton are 4 and 7 meV, respectively. A photocurrent veak at the energy of the free exci-

ton at 4 K is interpreted as due to an Auger process at the bound-exciton complexes.

Ex-

trinsic photocurrent is reported. The temperature dependence of its excitation spectrum is
anomalous from the point of view of the conventional Riehl--Schn recombination model and
is shown to be consistent with a model involving donor-acceptor pairs.

INTRODUCTION

Strong exciton absorption in TIBr in the region
of the fundamental edge was first observed by
Pleil,! although it was not initially recognized as
such. Nikitine and Reiss? first attributed this ab-
sorption to an exciton. This was confirmed by
Tutihasi,® Lefkowitz ef al.,* and more recently by
the extensive work of Bachrach and Brown® on
strain-free films. The latter, in addition, inter-
pret a peak at slightly larger energy than the ex-
citon peak, and separated from it by somewhat
less than the energy of a longitudinal optical (LO)
phonon, as an exciton-phonon bound state. This
is a new quasiparticle proposed by Toyozawa and
Hermanson® to explain an anomaly in phonon coop-
eration in exciton emission and absorption, re-
spectively. The anomaly consists of the observa-
tion that, in some materials, the position of the

lines due to cooperating phonons is not symmetrical

with respect to the no-phonon exciton line. In par-
ticular, in optical absorption, the separation of
the exciton peak from a higher energy companion
is less than the energy of the LO phonon. In emis-
sion, on the other hand, this separation is equal to
the LO phonon., The idea of the exciton-phonon
bound state has recently been elaborated on by
Toyozawa’ and Sak.® In addition, Bachrach and
Brown® determined the exciton effective mass from
the Faraday-rotation pattern of the exciton line
and the binding energy of the exciton (6.5 meV)
from the oscillatory magnetoabsorption.

In this paper we shall demonstrate radiative re-
combination via free and bound excitons as well as
an Auger process, a competing radiationless pro-
cess, for bound excitons in which the bound-exci-
ton energy appears as kinetic energy of one of the
particles by ejection into its respective conduction
band. Finally, nominally pure T1Br, just as
T1C1,2~!! will be shown to exhibit marked extrinsic
photoconductivity. The spectrum of extrinsic pho-
tocurrent will be shown to exhibit an anomalous
temperature dependence and suggest donor-accep-
tor pairing instead of isolated defects.

CRYSTALS AND EXPERIMENTAL TECHNIQUES

T1Br is cubic and has CsCl structure. It is dis-
tinguished by an unusually large static dielectric
constant'? 30. 4 (290 K), which increases to 35. 1
(1.5 K). Its band gap at 4 K is 3.016 eV and the
binding energy of the free exciton is 6.5 meV.?
The change of band gap with temperature is anom-
alous, increasing as the temperature increases.
This was noticed early by Fesefeldt!® and confirmed
by other workers® and is a property shared by
TIC1.'* Some of the physical properties of T1Br
have been tabulated in Ref. 5.

The nominally undoped single crystals of T1Br
used in this work were obtained from two commer-
cial sources. After cutting and polishing, the
samples were annealed for 12 h at 250 °C as sug-
gested by Smakula.!® Without annealing, the line-
widths of the exciton emission to be reported be-
low were much wider. The electrodes used in the



